If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11n^2+2n-1=0
a = 11; b = 2; c = -1;
Δ = b2-4ac
Δ = 22-4·11·(-1)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{3}}{2*11}=\frac{-2-4\sqrt{3}}{22} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{3}}{2*11}=\frac{-2+4\sqrt{3}}{22} $
| 2x+8+x-2=180 | | 4x-30+3x+4=180 | | 5656x+884=87878 | | 5(x+3)+3=18 | | y/4-13=6 | | p=2(70)+2(73) | | 6x-33=40-15 | | 5+1/2n=9 | | 20/4x5=1 | | 5v+7(v+3)=117 | | 11-3g=-2 | | 7x+9=19=6x | | 0.05x-0.09x=0.50 | | 4(x+4)-2x=26 | | 2x-7=13-1x= | | (7-x)^2-5x=0 | | 3x+8(x-1)=-4x | | -5=5d+3 | | 73=4b-7 | | (1/6p)=6-(1/12p) | | 7767m+46465=3456789 | | -3.4=a/9 | | 3m-6=-12=+2m | | 39m-19=180 | | 3/5w=1/8 | | h-5.4=-4.1 | | 7x+10=-4-23 | | 25x=300= | | -2/9w=24/27 | | t(2)=12-5 | | x+7.9=29.96 | | 3^x=3/2x+2 |